♥ Les puissances au collège

Exercice 1

Donne les écritures décimales si elles existent (fractionnaires sinon) de :

- $(-6)^2$
- (-3)-4
- 6⁻²
- (-9)⁻¹

Exercice 2

Écris sous la forme d'une puissance :

- $7^0 \times 7^1$
- $(-12)^{-2} \times (-12)^7$
- $12^2 \times 12^{-11}$
- $(-11)^{-20} \times (-11)^{-9}$

Exercice 3

Écris sous la forme d'une puissance :

- $\frac{(-8)^2}{(-8)^{-17}}$
- $\frac{17^0}{17^1}$
- $\frac{(-4)^{-2}}{(-4)^{10}}$
- 5^{-12}

Exercice 4

Écris sous la forme d'une puissance de 10:

- 0,001
- 0,000 000 01
- 100 000
- 10

Exercice 5

Écris en notation scientifique les nombres suivants :

- - 481,1
- 52 010
- 0,000 004 622
- - 0,000 001 122

(C)2019 wouf prod

Correction

Exercice 1

Si p=0 (et n \neq 0) alors n^p=1

Si p>0 alors n^p est le produit du facteur n par lui même p fois

et n^{-p} est l'inverse du produit du facteur n par lui même p fois

•
$$(-6)^2 = (-6) \times (-6) = 36$$

•
$$(-3)^{-4} = \frac{1}{-3 \times (-3) \times (-3) \times (-3)} = \frac{1}{81} \approx 0.012$$

•
$$6^{-2} = \frac{1}{6 \times 6} = \frac{1}{36} \approx 0.028$$

•
$$(-9)^{-1} = \frac{1}{-9} = \frac{-1}{9}$$

Exercice 2

Pour multiplier des puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit d'ajouter les exposants!

•
$$7^0 \times 7^1 = 7^1$$

•
$$(-12)^{-2} \times (-12)^7 = (-12)^5$$

• $12^2 \times 12^{-11} = 12^{-9}$

•
$$12^2 \times 12^{-11} = 12^{-9}$$

•
$$(-11)^{-20} \times (-11)^{-9} = (-11)^{-29}$$

Exercice 3

Pour simplifier le quotient de deux puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit de soustraire les exposants!

$$\bullet \quad \frac{(-8)^2}{(-8)^{-17}} = (-8)^{19}$$

•
$$\frac{17^0}{17^1} = 17^{-1}$$

$$\bullet \quad \frac{(-4)^{-2}}{(-4)^{10}} = (-4)^{-12}$$

Exercice 4

Pour tout entier n positif, $10^n = 10...0$ avec n zéros et $10^{-n} = 0,0...01$ avec n zéros

•
$$0.001 = 10^{-3}$$

•
$$0,000\ 000\ 01 = 10^{-8}$$

•
$$100\ 000 = 10^5$$

•
$$10 = 10^1$$

(C)2019 wouf prod

Exercice 5

Tout nombre décimal non nul peut être écrit en notation scientifique, c'est-à-dire sous la forme $a \times 10^n$, où a est un nombre décimal ayant un seul chiffre non nul pour partie entière et où n est un nombre entier relatif. a est appelé *mantisse* du nombre.

- $-481,1 = -4,811 \times 10^2$
- $52\ 010 = 5{,}201 \times 10^4$
- $0,000\ 004\ 622 = 4,622 \times 10^{-6}$
- $-0,000\ 001\ 122 = -1,122 \times 10^{-6}$

(C)2019 wouf prod