♥ Les puissances au collège

Exercice 1

Donne les écritures décimales si elles existent (fractionnaires sinon) de :

- (-4)⁻⁵
- \bullet 2^3
- (-1)⁻³
- (-6)⁻²

Exercice 2

Écris sous la forme d'une puissance :

- $(-6)^{-13} \times (-6)^{-2}$
- $(-9)^{-2} \times (-9)^{8}$
- $4^0 \times 4^1$
- $2^2 \times 2^{-18}$

Exercice 3

Écris sous la forme d'une puissance :

- $\frac{(-14)^0}{(-14)^1}$
- $\frac{4^2}{4^{-7}}$
- $\frac{6^{-12}}{6^{-20}}$
- $\frac{(-17)^3}{(-17)^{-3}}$

Exercice 4

Écris sous la forme d'une puissance de 10:

- 0,000 000 000 001
- 0,000 001
- 1 000 000 000
- 1000

Exercice 5

Écris en notation scientifique les nombres suivants :

- 0,064 17
- - 0,027 32
- 76,3
- -81,7

(C)2019 wouf prod

Correction

Exercice 1

Si p=0 (et n \neq 0) alors n^p=1

Si p>0 alors n^p est le produit du facteur n par lui même p fois

et n^{-p} est l'inverse du produit du facteur n par lui même p fois

•
$$(-4)^{-5} = \frac{1}{-4 \times (-4) \times (-4) \times (-4) \times (-4)} = \frac{1}{-1024} = \frac{-1}{1024} = -0.0009765625$$

•
$$2^3 = 2 \times 2 \times 2 = 8$$

•
$$(-1)^{-3} = \frac{1}{-1 \times (-1) \times (-1)} = \frac{1}{-1} = -1$$

•
$$(-6)^{-2} = \frac{1}{-6 \times (-6)} = \frac{1}{36} \approx 0.028$$

Exercice 2

Pour multiplier des puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit d'ajouter les exposants!

•
$$(-6)^{-13} \times (-6)^{-2} = (-6)^{-15}$$

•
$$(-9)^{-2} \times (-9)^8 = (-9)^6$$

• $4^0 \times 4^1 = 4^1$

•
$$4^0 \times 4^1 = 4^1$$

•
$$2^2 \times 2^{-18} = 2^{-16}$$

Exercice 3

Pour simplifier le quotient de deux puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit de soustraire les exposants!

$$\bullet \quad \frac{(-14)^0}{(-14)^1} = (-14)^{-1}$$

•
$$\frac{4^2}{4^{-7}} = 4^9$$

$$\bullet \quad \frac{6^{-12}}{6^{-20}} = 6^8$$

•
$$\frac{(-17)^3}{(-17)^{-3}} = (-17)^6$$

Exercice 4

Pour tout entier n positif, $10^n = 10...0$ avec n zéros et $10^{-n} = 0,0...01$ avec n zéros

- $0,000\ 000\ 000\ 001 = 10^{-12}$
- $0,000\,001 = 10^{-6}$
- $1\ 000\ 000\ 000 = 10^9$
- $1000 = 10^3$

(C)2019 wouf prod

Exercice 5

Tout nombre décimal non nul peut être écrit en notation scientifique, c'est-à-dire sous la forme $a \times 10^n$, où a est un nombre décimal ayant un seul chiffre non nul pour partie entière et où n est un nombre entier relatif. a est appelé *mantisse* du nombre.

- $0,064\ 17 = 6,417 \times 10^{-2}$
- $-0.02732 = -2.732 \times 10^{-2}$
- $76,3 = 7,63 \times 10^1$
- $-81,7 = -8,17 \times 10^1$

(C)2019 wouf prod