♥ Les puissances au collège

Exercice 1

Donne les écritures décimales si elles existent (fractionnaires sinon) de :

- $(-3)^3$
- 90
- (-8)⁻²
- (-7)⁻¹

Exercice 2

Écris sous la forme d'une puissance :

- $5^0 \times 5^1$
- $6^2 \times 6^{-17}$
- $9^{-12} \times 9^{-20}$
- $(-8)^{-2} \times (-8)^{13}$

Exercice 3

Écris sous la forme d'une puissance :

- $\frac{18^2}{18^{-10}}$
- $\frac{(-7)^{-1}}{(-7)^{-4}}$
- $\frac{5^0}{5^1}$
- $\frac{(-10)^{-2}}{(-10)^5}$

Exercice 4

Écris sous la forme d'une puissance de 10:

- 0,000 000 001
- 0,000 000 1
- 100 000 000
- 1

Exercice 5

Écris en notation scientifique les nombres suivants :

- - 0,029 76
- 0,004 704
- - 2,115
- 7 922

(C)2019 wouf prod

Correction

Exercice 1

Si p=0 (et n \neq 0) alors n^p=1

Si p>0 alors n^p est le produit du facteur n par lui même p fois

et n^{-p} est l'inverse du produit du facteur n par lui même p fois

•
$$(-3)^3 = (-3) \times (-3) \times (-3) = -27$$

•
$$9^0 = 1$$

•
$$(-8)^{-2} = \frac{1}{-8 \times (-8)} = \frac{1}{64} = 0.015625$$

•
$$(-7)^{-1} = \frac{1}{-7} = \frac{-1}{7}$$

Exercice 2

Pour multiplier des puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit d'ajouter les exposants !

•
$$5^0 \times 5^1 = 5^1$$

•
$$6^2 \times 6^{-17} = 6^{-15}$$

•
$$9^{-12} \times 9^{-20} = 9^{-32}$$

•
$$(-8)^{-2} \times (-8)^{13} = (-8)^{11}$$

Exercice 3

Pour simplifier le quotient de deux puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit de soustraire les exposants !

$$\bullet \quad \frac{18^2}{18^{-10}} = 18^{12}$$

$$\bullet \quad \frac{(-7)^{-1}}{(-7)^{-4}} = (-7)^3$$

•
$$\frac{5^0}{5^1} = 5^{-1}$$

Exercice 4

Pour tout entier n positif, $10^n = 10...0$ avec n zéros et $10^{-n} = 0,0...01$ avec n zéros

•
$$0,000\ 000\ 001 = 10^{-9}$$

•
$$0,000\ 000\ 1 = 10^{-7}$$

•
$$100\ 000\ 000 = 10^8$$

•
$$1 = 10^0$$

(C)2019 wouf prod

Exercice 5

Tout nombre décimal non nul peut être écrit en notation scientifique, c'est-à-dire sous la forme $a \times 10^n$, où a est un nombre décimal ayant un seul chiffre non nul pour partie entière et où n est un nombre entier relatif. a est appelé *mantisse* du nombre.

- $-0,02976 = -2,976 \times 10^{-2}$
- $0,004704 = 4,704 \times 10^{-3}$
- $-2,115 = -2,115 \times 10^0$
- $7922 = 7,922 \times 10^3$

(C)2019 wouf prod