♥ Les puissances au collège

Exercice 1

Donne les écritures décimales si elles existent (fractionnaires sinon) de :

- $(-6)^2$
- (-1)-4
- 9-1
- (-4)²

Exercice 2

Écris sous la forme d'une puissance :

- $(-20)^2 \times (-20)^{-8}$
- $(-13)^{-15} \times (-13)^{-17}$
- $(-14)^0 \times (-14)^1$
- $(-8)^{-2} \times (-8)^{18}$

Exercice 3

Écris sous la forme d'une puissance :

- $\frac{14^2}{14^{-9}}$
- $\frac{(-20)^0}{(-20)^1}$
- $\frac{18^{-5}}{18^{-4}}$
- $\frac{12^{-2}}{12^{15}}$

Exercice 4

Écris sous la forme d'une puissance de 10:

- 10
- 100 000 000
- 0,000 000 000 01
- 0,000 001

Exercice 5

Écris en notation scientifique les nombres suivants :

- - 0,480 7
- 0,018 16
- - 669 600
- 6848

(C)2019 wouf prod

Correction

Exercice 1

Si p=0 (et n \neq 0) alors n^p=1

Si p>0 alors n^p est le produit du facteur n par lui même p fois

et n^{-p} est l'inverse du produit du facteur n par lui même p fois

•
$$(-6)^2 = (-6) \times (-6) = 36$$

•
$$(-1)^{-4} = \frac{1}{-1 \times (-1) \times (-1) \times (-1)} = \frac{1}{1} = 1$$

•
$$9^{-1} = \frac{1}{9} \approx 0.111$$

•
$$(-4)^2 = (-4) \times (-4) = 16$$

Exercice 2

Pour multiplier des puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit d'ajouter les exposants!

•
$$(-20)^2 \times (-20)^{-8} = (-20)^{-6}$$

•
$$(-13)^{-15} \times (-13)^{-17} = (-13)^{-32}$$

•
$$(-14)^0 \times (-14)^1 = (-14)^1$$

• $(-8)^{-2} \times (-8)^{18} = (-8)^{16}$

•
$$(-8)^{-2} \times (-8)^{18} = (-8)^{16}$$

Exercice 3

Pour simplifier le quotient de deux puissances d'un même nombre, on s'aperçoit en revenant à la définition qu'il suffit de soustraire les exposants!

$$\bullet \quad \frac{14^2}{14^{-9}} = 14^{11}$$

$$\bullet \quad \frac{18^{-5}}{18^{-4}} = 18^{-1}$$

Exercice 4

Pour tout entier n positif, $10^n = 10...0$ avec n zéros et $10^{-n} = 0,0...01$ avec n zéros

•
$$10 = 10^1$$

•
$$100\ 000\ 000 = 10^8$$

•
$$0,000\ 000\ 000\ 01 = 10^{-11}$$

•
$$0.000001 = 10^{-6}$$

(C)2019 wouf prod

Exercice 5

Tout nombre décimal non nul peut être écrit en notation scientifique, c'est-à-dire sous la forme $a \times 10^n$, où a est un nombre décimal ayant un seul chiffre non nul pour partie entière et où n est un nombre entier relatif. a est appelé *mantisse* du nombre.

- $-0,4807 = -4,807 \times 10^{-1}$
- $0.01816 = 1.816 \times 10^{-2}$
- $-669600 = -6,696 \times 10^5$
- $6848 = 6,848 \times 10^3$

(C)2019 wouf prod