♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle DGJ rectangle en D, on sait que :

- GJ = 4.2 cm
- $\overrightarrow{GJD} = 13^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [DG]. (Arrondir au dixième)

Exercice 2

Dans le triangle CVT rectangle en C, on sait que :

- CT = 5,6 cm CVT = 55°

Après avoir fait un schéma, calcule la longueur du segment [TV]. (Arrondir au dixième)

Exercice 3

Dans le triangle ZGV rectangle en Z, on sait que :

- ZV = 5.5 cm
- GV = 7 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle ZGV.

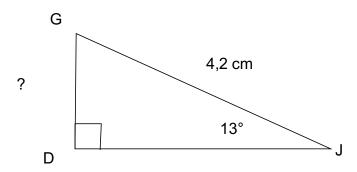
Exercice 4

Dans le triangle FNC rectangle en F, on sait que :

- NC = 8.2 cm
- FNC = 48°

Après avoir fait un schéma, calcule la longueur du segment [FC]. (Arrondir au dixième)

Exercice 5


Dans le triangle ZPW rectangle en Z, on sait que :

- ZW = 5.9 cm
- PW = 6.7 cm

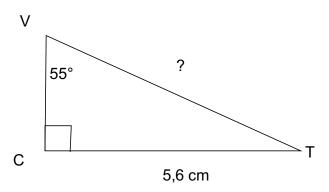
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle ZWP.

Fiche: 100

Exercice 1

Dans le triangle DGJ rectangle en D, on cherche une relation entre l'angle aigu \widehat{DJG} son coté opposé et l'hypoténuse du triangle.

$$\frac{DG}{GJ} = sin(\widehat{DJG})$$


ďoù

$$\frac{\mathrm{DG}}{4,2} = \sin(13^\circ)$$

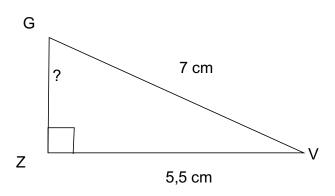
On a donc DG = $4.2 \times \sin(13^\circ) \approx 0.9$ cm

Fiche: 100

Exercice 2

Dans le triangle CVT rectangle en C, on cherche une relation entre l'angle aigu CVT son coté opposé et l'hypoténuse du triangle.

$$\frac{CT}{VT} = \sin(\widehat{CVT})$$


ďoù

$$\frac{5.6}{VT} = \sin(55^\circ)$$

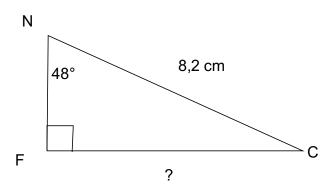
On a donc VT = $5.6 / \sin(55^\circ) \approx 6.8 \text{ cm}$

Fiche: 100

Exercice 3

Dans le triangle ZGV rectangle en Z, on cherche une relation entre l'angle aigu \overline{ZGV} son coté opposé et l'hypoténuse du triangle.

$$\frac{ZV}{GV} = \sin(\overline{ZGV})$$


ďoù

$$\frac{5.5}{7} = \sin(\overline{ZGV})$$

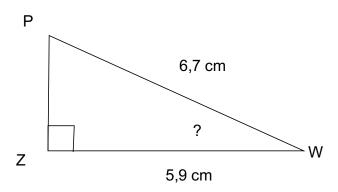
On a donc \overline{ZGV} = ArcSin(5,5 / 7) \approx 52°.

Fiche: 100

Exercice 4

Dans le triangle FNC rectangle en F, on cherche une relation entre l'angle aigu FNC son coté opposé et l'hypoténuse du triangle.

$$\frac{FC}{NC} = \sin(\overline{FNC})$$


d'où

$$\frac{FC}{8,2} = \sin(48^\circ)$$

On a donc FC = $8.2 \times \sin(48^\circ) \approx 6.1 \text{ cm}$

Fiche: 100

Exercice 5

Dans le triangle ZPW rectangle en Z, on cherche une relation entre l'angle aigu \overline{ZWP} son coté adjacent et l'hypoténuse du triangle.

$$\frac{ZW}{PW} = cos(\overline{ZWP})$$

ďoù

$$\frac{5,9}{6,7} = \cos(\overline{ZWP})$$

On a donc \overline{ZWP} = Arccos (5,9/6,7) $\approx 28^{\circ}$