♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle GPB rectangle en G, on sait que :

- PB = 1.3 cm
- $\widehat{\text{GPB}} = 64^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [GB]. (Arrondir au dixième)

Exercice 2

Dans le triangle FPT rectangle en F, on sait que :

- FP = 2 cm
- PTF = 18°

Après avoir fait un schéma, calcule la longueur du segment [TP]. (Arrondir au dixième)

Exercice 3

Dans le triangle DBS rectangle en D, on sait que :

- DS = 4 cm
- $\overrightarrow{BSD} = 18^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [DB]. (Arrondir au dixième)

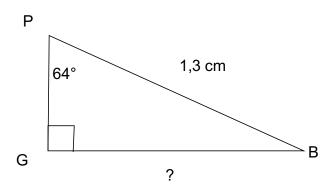
Exercice 4

Dans le triangle MAC rectangle en M, on sait que :

- MA = 2.5 cm
- AC = 8.4 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle MCA.

Exercice 5


Dans le triangle KWS rectangle en K, on sait que :

- KS = 4.5 cm
- WS = 6.7 cm

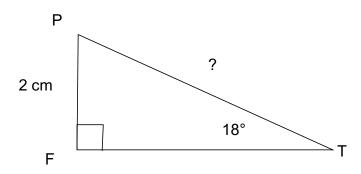
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle KWS.

Fiche: 138

Exercice 1

Dans le triangle GPB rectangle en G, on cherche une relation entre l'angle aigu GPB son coté opposé et l'hypoténuse du triangle.

$$\frac{GB}{PB} = \sin(\widehat{GPB})$$


ďoù

$$\frac{GB}{1,3} = \sin(64^\circ)$$

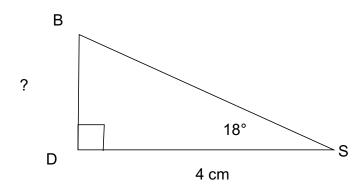
On a donc GB = $1.3 \times \sin(64^\circ) \approx 1.2$ cm

Fiche: 138

Exercice 2

Dans le triangle FPT rectangle en F, on cherche une relation entre l'angle aigu FTP son coté opposé et l'hypoténuse du triangle.

$$\frac{FP}{PT} = \sin(\overline{FTP})$$


ďoù

$$\frac{2}{PT} = \sin(18^\circ)$$

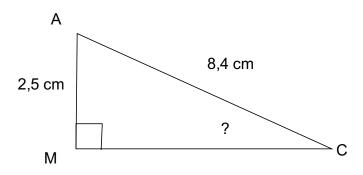
On a donc PT = $2 / \sin(18^\circ) \approx 6.5$ cm

Fiche: 138

Exercice 3

Dans le triangle DBS rectangle en D, on cherche une relation entre l'angle aigu DSB son coté opposé et son coté adjacent.

$$\frac{DB}{DS} = tan(\overline{DSB})$$


d'où

$$\frac{DB}{4} = tan(18^{\circ})$$

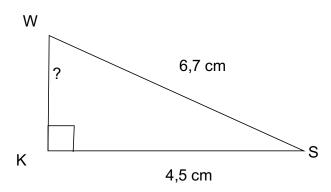
On a donc DB = $4 \times tan(18^{\circ}) \approx 1.3$ cm

Fiche: 138

Exercice 4

Dans le triangle MAC rectangle en M, on cherche une relation entre l'angle aigu MCA son coté opposé et l'hypoténuse du triangle.

$$\frac{MA}{AC} = \sin(\widehat{MCA})$$


ďoù

$$\frac{2.5}{8.4} = \sin(\widehat{\text{MCA}})$$

On a done \widehat{MCA} = ArcSin(2,5 / 8,4) \approx 17°.

Fiche: 138

Exercice 5

Dans le triangle KWS rectangle en K, on cherche une relation entre l'angle aigu KWS son coté opposé et l'hypoténuse du triangle.

$$\frac{KS}{WS} = sin(\widehat{KWS})$$

ďoù

$$\frac{4,5}{6,7} = \sin(\overline{KWS})$$

On a donc \widetilde{KWS} = ArcSin(4,5 / 6,7) \approx 42°.