♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle BCS rectangle en B, on sait que :

- CS = 7.8 cm
- $\widehat{\text{CSB}} = 24^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [BS]. (Arrondir au dixième)

Exercice 2

Dans le triangle BSZ rectangle en B, on sait que :

- BS = 1.2 cm
- SZ = 9.1 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle BZS.

Exercice 3

Dans le triangle GFW rectangle en G, on sait que :

- GW = 5.1 cm
- FW = 9.7 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle GFW.

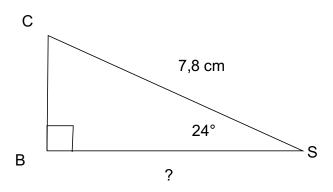
Exercice 4

Dans le triangle TPM rectangle en T, on sait que :

- TP = 1.4 cm
- $\widehat{PMT} = 10^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [MP]. (Arrondir au dixième)

Exercice 5


Dans le triangle RBN rectangle en R, on sait que :

- RN = 8,3 cm
- RBN = 74°

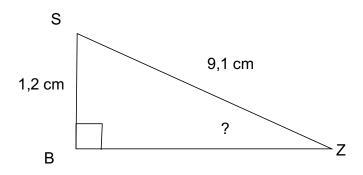
Après avoir fait un schéma, calcule la longueur du segment [RB]. (Arrondir au dixième)

Fiche: 143

Exercice 1

Dans le triangle BCS rectangle en B, on cherche une relation entre l'angle aigu BSC son coté adjacent et l'hypoténuse du triangle.

$$\frac{BS}{CS} = \cos(\overline{BSC})$$


d'où

$$\frac{\mathrm{BS}}{7.8} = \cos(24^\circ)$$

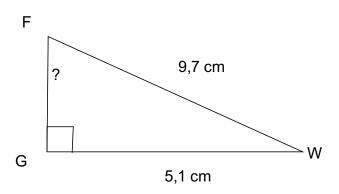
On a donc BS = $7.8 \times \cos(24^{\circ}) \approx 7.1 \text{ cm}$

Fiche: 143

Exercice 2

Dans le triangle BSZ rectangle en B, on cherche une relation entre l'angle aigu BZS son coté opposé et l'hypoténuse du triangle.

$$\frac{BS}{SZ} = sin(\overline{BZS})$$


ďoù

$$\frac{1,2}{9,1} = \sin(\widehat{BZS})$$

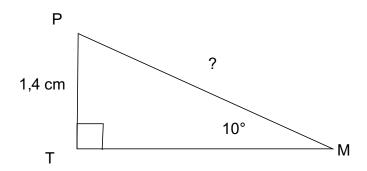
On a donc \overline{BZS} = ArcSin(1,2 / 9,1) $\approx 8^{\circ}$.

Fiche: 143

Exercice 3

Dans le triangle GFW rectangle en G, on cherche une relation entre l'angle aigu GFW son coté opposé et l'hypoténuse du triangle.

$$\frac{GW}{FW} = \sin(\widehat{GFW})$$


ďoù

$$\frac{5,1}{9,7} = \sin(\widehat{\text{GFW}})$$

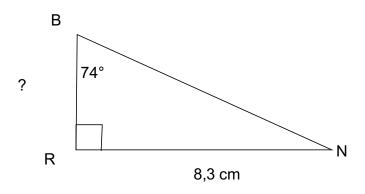
On a donc $\widehat{\text{GFW}}$ = ArcSin(5,1 / 9,7) \approx 32°.

Fiche: 143

Exercice 4

Dans le triangle TPM rectangle en T, on cherche une relation entre l'angle aigu TMP son coté opposé et l'hypoténuse du triangle.

$$\frac{TP}{PM} = sin(\overline{TMP})$$


ďoù

$$\frac{1,4}{PM} = \sin(10^\circ)$$

On a donc PM = 1,4 / $\sin(10^\circ) \approx 8.1$ cm

Fiche: 143

Exercice 5

Dans le triangle RBN rectangle en R, on cherche une relation entre l'angle aigu RBN son coté adjacent et son coté opposé.

$$\frac{RN}{RB} = tan(\overline{RBN})$$

ďoù

$$\frac{8,3}{RB} = \tan(74^\circ)$$

On a donc RB = $8.3 / \tan(74^{\circ}) \approx 2.4 \text{ cm}$