♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle ZGN rectangle en Z, on sait que :

- ZG = 7.7 cm
- $\overline{\text{ZGN}} = 69^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [NG]. (Arrondir au dixième)

Exercice 2

Dans le triangle BZN rectangle en B, on sait que :

- BN = 5.5 cm
- ZN = 7.1 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle BZN.

Exercice 3

Dans le triangle TFA rectangle en T, on sait que :

- FA = 2,4 cm
- $\overline{FAT} = 45^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [TA]. (Arrondir au dixième)

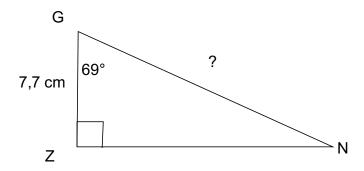
Exercice 4

Dans le triangle FPM rectangle en F, on sait que :

- FM = 5.1 cm
- $\widehat{PMF} = 32^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [FP]. (Arrondir au dixième)

Exercice 5


Dans le triangle LKZ rectangle en L, on sait que :

- LK = 1.7 cm
- LZ = 4.9 cm

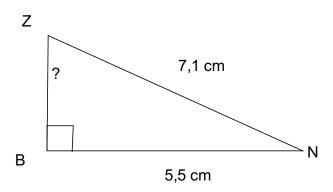
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle LZK.

Fiche: 228

Exercice 1

Dans le triangle ZGN rectangle en Z, on cherche une relation entre l'angle aigu ZGN son coté adjacent et l'hypoténuse du triangle.

$$\frac{ZG}{GN} = \cos(\widehat{ZGN})$$


ďoù

$$\frac{7.7}{GN} = \cos(69^\circ)$$

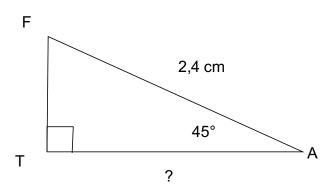
On a donc GN = $7.7 / \cos(69^\circ) \approx 21.5 \text{ cm}$

Fiche: 228

Exercice 2

Dans le triangle BZN rectangle en B, on cherche une relation entre l'angle aigu \widehat{BZN} son coté opposé et l'hypoténuse du triangle.

$$\frac{BN}{ZN} = \sin(\overline{BZN})$$


ďoù

$$\frac{5,5}{7,1} = \sin(\widehat{BZN})$$

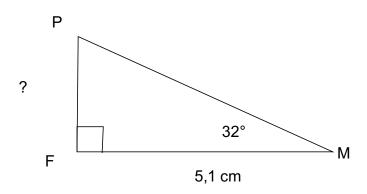
On a donc \widehat{BZN} = ArcSin(5,5 / 7,1) \approx 51°.

Fiche: 228

Exercice 3

Dans le triangle TFA rectangle en T, on cherche une relation entre l'angle aigu TAF son coté adjacent et l'hypoténuse du triangle.

$$\frac{TA}{FA} = \cos(\overline{TAF})$$


ďoù

$$\frac{\text{TA}}{2,4} = \cos(45^\circ)$$

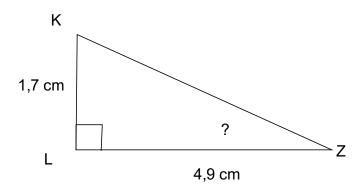
On a donc TA = $2.4 \times \cos(45^{\circ}) \approx 1.7$ cm

Fiche: 228

Exercice 4

Dans le triangle FPM rectangle en F, on cherche une relation entre l'angle aigu FMP son coté opposé et son coté adjacent.

$$\frac{FP}{FM} = tan(\widehat{FMP})$$


ďoù

$$\frac{\text{FP}}{5,1} = \tan(32^\circ)$$

On a donc FP = $5.1 \times \tan(32^{\circ}) \approx 3.2$ cm

Fiche: 228

Exercice 5

Dans le triangle LKZ rectangle en L, on cherche une relation entre l'angle aigu \widehat{LZK} son coté opposé et son coté adjacent.

$$\frac{LK}{LZ} = tan(\widehat{LZK})$$

d'où

$$\frac{1,7}{4,9} = tan(\widehat{LZK})$$

On a done \widehat{LZK} = ArcTan(1,7 / 4,9) \approx 19°.