♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle TFG rectangle en T, on sait que :

- FG = 5.8 cm
- $\overline{TFG} = 78^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [TF]. (Arrondir au dixième)

Exercice 2

Dans le triangle CTK rectangle en C, on sait que :

- CT = 4,7 cm CTK = 59°

Après avoir fait un schéma, calcule la longueur du segment [KT]. (Arrondir au dixième)

Exercice 3

Dans le triangle APN rectangle en A, on sait que :

- PN = 4.8 cm
- $\overrightarrow{APN} = 48^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [AN]. (Arrondir au dixième)

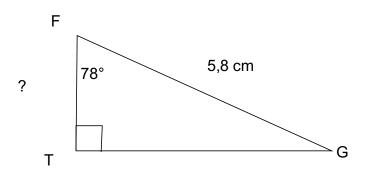
Exercice 4

Dans le triangle FRV rectangle en F, on sait que :

- FR = 2.1 cm
- FV = 4.9 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle FRV.

Exercice 5


Dans le triangle GDA rectangle en G, on sait que :

- GD = 1.5 cm
- GA = 4.7 cm

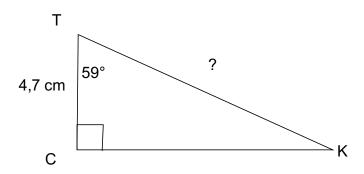
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle GAD.

Fiche: 248

Exercice 1

Dans le triangle TFG rectangle en T, on cherche une relation entre l'angle aigu TFG son coté adjacent et l'hypoténuse du triangle.

$$\frac{TF}{FG} = \cos(\overline{TFG})$$


ďoù

$$\frac{\mathrm{TF}}{5,8} = \cos(78^{\circ})$$

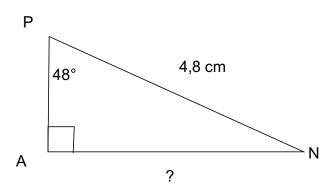
On a donc TF = $5.8 \times \cos(78^{\circ}) \approx 1.2 \text{ cm}$

Fiche: 248

Exercice 2

Dans le triangle CTK rectangle en C, on cherche une relation entre l'angle aigu CTK son coté adjacent et l'hypoténuse du triangle.

$$\frac{CT}{TK} = \cos(\overline{CTK})$$


ďoù

$$\frac{4,7}{TK} = \cos(59^\circ)$$

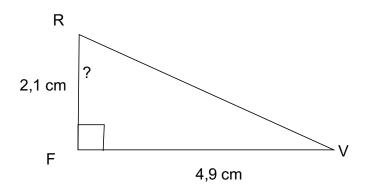
On a donc TK = $4.7 / \cos(59^\circ) \approx 9.1 \text{ cm}$

Fiche: 248

Exercice 3

Dans le triangle APN rectangle en A, on cherche une relation entre l'angle aigu APN son coté opposé et l'hypoténuse du triangle.

$$\frac{AN}{PN} = \sin(\widehat{APN})$$


ďoù

$$\frac{AN}{4,8} = \sin(48^\circ)$$

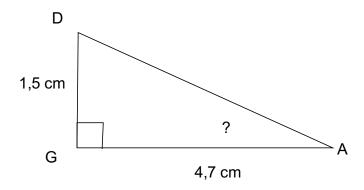
On a donc AN = $4.8 \times \sin(48^\circ) \approx 3.6 \text{ cm}$

Fiche: 248

Exercice 4

Dans le triangle FRV rectangle en F, on cherche une relation entre l'angle aigu FRV son coté adjacent et son coté opposé.

$$\frac{FV}{FR} = tan(\widehat{FRV})$$


ďoù

$$\frac{4.9}{2.1} = tan(\widehat{FRV})$$

On a donc \widehat{FRV} = ArcTan(4,9 / 2,1) \approx 67°.

Fiche: 248

Exercice 5

Dans le triangle GDA rectangle en G, on cherche une relation entre l'angle aigu GAD son coté opposé et son coté adjacent.

$$\frac{GD}{GA} = tan(\overline{GAD})$$

d'où

$$\frac{1,5}{4,7} = \tan(\widehat{GAD})$$

On a donc $\widehat{\text{GAD}}$ = ArcTan(1,5 / 4,7) \approx 18°.