♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle DZA rectangle en D, on sait que :

- ZA = 0.8 cm
- $\widehat{Z}AD = 44^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [DA]. (Arrondir au dixième)

Exercice 2

Dans le triangle RHN rectangle en R, on sait que :

- RN = 5.6 cm
- HN = 7.8 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle RNH.

Exercice 3

Dans le triangle ANT rectangle en A, on sait que :

- AT = 8.8 cm
- $\overline{NTA} = 20^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [AN]. (Arrondir au dixième)

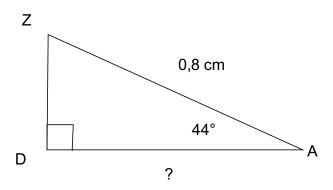
Exercice 4

Dans le triangle DTN rectangle en D, on sait que :

- DT = 1.6 cm
- DN = 4.5 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle DTN.

Exercice 5


Dans le triangle CHG rectangle en C, on sait que :

- CH = 6.8 cm
- $\overrightarrow{HGC} = 13^{\circ}$

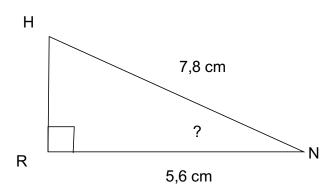
Après avoir fait un schéma, calcule la longueur du segment [GH]. (Arrondir au dixième)

Fiche: 269

Exercice 1

Dans le triangle DZA rectangle en D, on cherche une relation entre l'angle aigu \widehat{DAZ} son coté adjacent et l'hypoténuse du triangle.

$$\frac{DA}{ZA} = \cos(\widehat{DAZ})$$


ďoù

$$\frac{\mathrm{DA}}{0.8} = \cos(44^\circ)$$

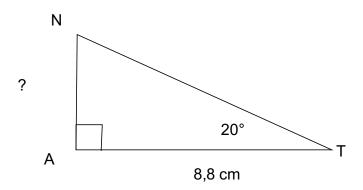
On a donc DA = $0.8 \times \cos(44^{\circ}) \approx 0.6$ cm

Fiche: 269

Exercice 2

Dans le triangle RHN rectangle en R, on cherche une relation entre l'angle aigu RNH son coté adjacent et l'hypoténuse du triangle.

$$\frac{RN}{HN} = \cos(\widehat{RNH})$$


ďoù

$$\frac{5,6}{7,8} = \cos(\overline{RNH})$$

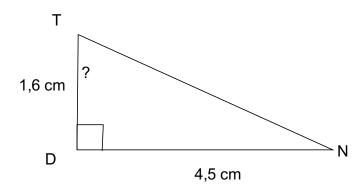
On a donc \widehat{RNH} = Arccos $(5,6/7,8) \approx 44^{\circ}$

Fiche: 269

Exercice 3

Dans le triangle ANT rectangle en A, on cherche une relation entre l'angle aigu ATN son coté opposé et son coté adjacent.

$$\frac{AN}{AT} = \tan(\widehat{ATN})$$


ďoù

$$\frac{\mathrm{AN}}{8.8} = \tan(20^\circ)$$

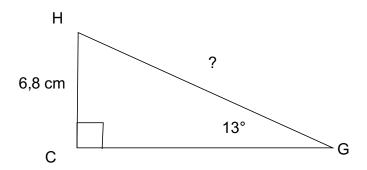
On a donc AN = $8.8 \times \tan(20^{\circ}) \approx 3.2 \text{ cm}$

Fiche: 269

Exercice 4

Dans le triangle DTN rectangle en D, on cherche une relation entre l'angle aigu DTN son coté adjacent et son coté opposé.

$$\frac{DN}{DT} = tan(\widehat{DTN})$$


ďoù

$$\frac{4,5}{1,6} = \tan(\widehat{DTN})$$

On a donc \widehat{DTN} = ArcTan(4,5 / 1,6) $\approx 70^{\circ}$.

Fiche: 269

Exercice 5

Dans le triangle CHG rectangle en C, on cherche une relation entre l'angle aigu CGH son coté opposé et l'hypoténuse du triangle.

$$\frac{CH}{HG} = \sin(\widehat{CGH})$$

ďoù

$$\frac{6.8}{\text{HG}} = \sin(13^\circ)$$

On a donc HG = $6.8 / \sin(13^\circ) \approx 30.2$ cm