♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle GBN rectangle en G, on sait que :

- BN = 6.1 cm
- $\widehat{\text{GBN}} = 62^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [GB]. (Arrondir au dixième)

Exercice 2

Dans le triangle NZJ rectangle en N, on sait que :

- NJ = 4.3 cm
- ZJ = 7.3 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle NZJ.

Exercice 3

Dans le triangle VML rectangle en V, on sait que :

- VM = 1.9 cm
- ML = 8.5 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle VLM.

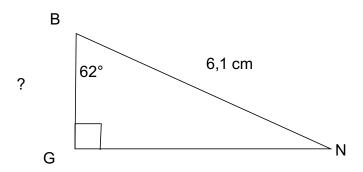
Exercice 4

Dans le triangle BAZ rectangle en B, on sait que :

- AZ = 6.2 cm
- $\widehat{BAZ} = 57^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [BZ]. (Arrondir au dixième)

Exercice 5


Dans le triangle CGR rectangle en C, on sait que :

- CR = 3.4 cm
- GRC = 12°

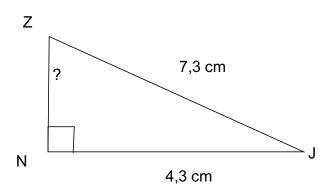
Après avoir fait un schéma, calcule la longueur du segment [RG]. (Arrondir au dixième)

Fiche: 300

Exercice 1

Dans le triangle GBN rectangle en G, on cherche une relation entre l'angle aigu GBN son coté adjacent et l'hypoténuse du triangle.

$$\frac{GB}{BN} = \cos(\widehat{GBN})$$


ďoù

$$\frac{GB}{6.1} = \cos(62^\circ)$$

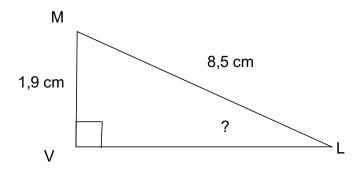
On a donc GB = $6.1 \times \cos(62^{\circ}) \approx 2.9 \text{ cm}$

Fiche: 300

Exercice 2

Dans le triangle NZJ rectangle en N, on cherche une relation entre l'angle aigu NZJ son coté opposé et l'hypoténuse du triangle.

$$\frac{NJ}{ZJ} = sin(\widehat{NZJ})$$


d'où

$$\frac{4,3}{7,3} = \sin(\widehat{NZJ})$$

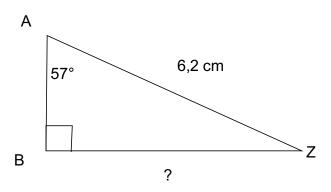
On a done \widehat{NZJ} = ArcSin(4,3 / 7,3) \approx 36°.

Fiche: 300

Exercice 3

Dans le triangle VML rectangle en V, on cherche une relation entre l'angle aigu VLM son coté opposé et l'hypoténuse du triangle.

$$\frac{VM}{ML} = sin(\widehat{VLM})$$


d'où

$$\frac{1,9}{8,5} = \sin(\widehat{VLM})$$

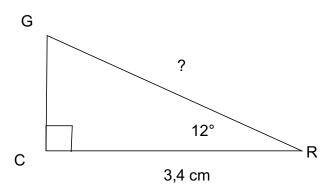
On a donc $\widehat{\text{VLM}}$ = ArcSin(1,9 / 8,5) \approx 13°.

Fiche: 300

Exercice 4

Dans le triangle BAZ rectangle en B, on cherche une relation entre l'angle aigu BAZ son coté opposé et l'hypoténuse du triangle.

$$\frac{BZ}{AZ} = \sin(\widehat{BAZ})$$


ďoù

$$\frac{\mathrm{BZ}}{6,2} = \sin(57^\circ)$$

On a donc BZ = $6.2 \times \sin(57^{\circ}) \approx 5.2 \text{ cm}$

Fiche: 300

Exercice 5

Dans le triangle CGR rectangle en C, on cherche une relation entre l'angle aigu CRG son coté adjacent et l'hypoténuse du triangle.

$$\frac{CR}{GR} = \cos(\overline{CRG})$$

ďoù

$$\frac{3,4}{GR} = \cos(12^\circ)$$

On a donc GR = 3,4 / $\cos(12^{\circ}) \approx 3.5$ cm