♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle KHB rectangle en K, on sait que :

- HB = 7.3 cm
- HBK = 45°

Après avoir fait un schéma, calcule la longueur du segment [KH]. (Arrondir au dixième)

Exercice 2

Dans le triangle PSN rectangle en P, on sait que :

- PS = 3.7 cm
- $\overrightarrow{PSN} = 60^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [NS]. (Arrondir au dixième)

Exercice 3

Dans le triangle ZSP rectangle en Z, on sait que :

- ZS = 2.3 cm
- SP = 8 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle ZSP.

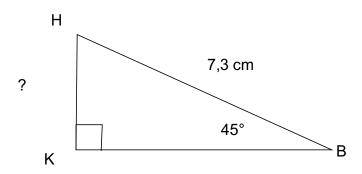
Exercice 4

Dans le triangle LWF rectangle en L, on sait que :

- LW = 2.6 cm
- WF = 6.9 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle LFW.

Exercice 5


Dans le triangle WCF rectangle en W, on sait que :

- CF = 1.5 cm
- CFW = 12°

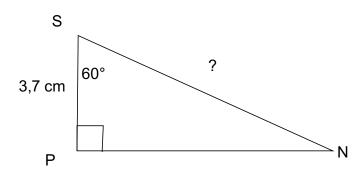
Après avoir fait un schéma, calcule la longueur du segment [WF]. (Arrondir au dixième)

Fiche: 303

Exercice 1

Dans le triangle KHB rectangle en K, on cherche une relation entre l'angle aigu KBH son coté opposé et l'hypoténuse du triangle.

$$\frac{KH}{HB} = \sin(\overline{KBH})$$


d'où

$$\frac{KH}{7,3} = \sin(45^\circ)$$

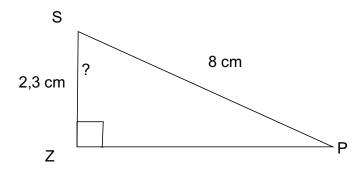
On a donc KH = $7.3 \times \sin(45^\circ) \approx 5.2$ cm

Fiche: 303

Exercice 2

Dans le triangle PSN rectangle en P, on cherche une relation entre l'angle aigu PSN son coté adjacent et l'hypoténuse du triangle.

$$\frac{PS}{SN} = cos(\widehat{PSN})$$


ďoù

$$\frac{3.7}{SN} = \cos(60^\circ)$$

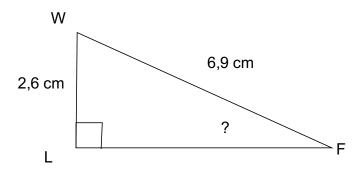
On a donc SN = $3.7 / \cos(60^{\circ}) \approx 7.4$ cm

Fiche: 303

Exercice 3

Dans le triangle ZSP rectangle en Z, on cherche une relation entre l'angle aigu \overline{ZSP} son coté adjacent et l'hypoténuse du triangle.

$$\frac{ZS}{SP} = cos(\overline{ZSP})$$


ďoù

$$\frac{2,3}{8} = \cos(\overline{ZSP})$$

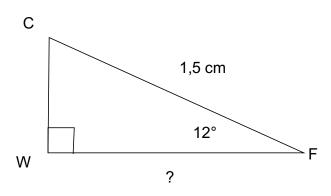
On a donc \overline{ZSP} = ArcCos(2,3 / 8) \approx 73°.

Fiche: 303

Exercice 4

Dans le triangle LWF rectangle en L, on cherche une relation entre l'angle aigu LFW son coté opposé et l'hypoténuse du triangle.

$$\frac{LW}{WF} = sin(\widehat{LFW})$$


ďoù

$$\frac{2,6}{6,9} = \sin(\widehat{LFW})$$

On a donc $\widehat{\text{LFW}}$ = ArcSin(2,6 / 6,9) \approx 22°.

Fiche: 303

Exercice 5

Dans le triangle WCF rectangle en W, on cherche une relation entre l'angle aigu WFC son coté adjacent et l'hypoténuse du triangle.

$$\frac{WF}{CF} = \cos(\widehat{WFC})$$

d'où

$$\frac{\text{WF}}{1,5} = \cos(12^\circ)$$

On a donc WF = 1,5 \times cos(12°) \approx 1.5 cm