♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle ZHW rectangle en Z, on sait que :

- ZH = 3 cm
- ZW = 5 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle ZWH.

Exercice 2

Dans le triangle FWN rectangle en F, on sait que :

- FN = 6.7 cm
- FWN = 59°

Après avoir fait un schéma, calcule la longueur du segment [FW]. (Arrondir au dixième)

Exercice 3

Dans le triangle AMG rectangle en A, on sait que :

- AM = 3.3 cm
- $\overline{MGA} = 41^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [AG]. (Arrondir au dixième)

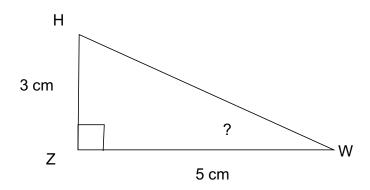
Exercice 4

Dans le triangle PGK rectangle en P, on sait que :

- PK = 8.6 cm
- $\widehat{\text{GKP}} = 18^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [KG]. (Arrondir au dixième)

Exercice 5


Dans le triangle NTJ rectangle en N, on sait que :

- NT = 1,5 cm
- NJ = 5.1 cm

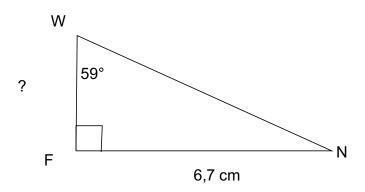
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle NTJ.

Fiche: 334

Exercice 1

Dans le triangle ZHW rectangle en Z, on cherche une relation entre l'angle aigu ZWH son coté opposé et son coté adjacent.

$$\frac{ZH}{ZW} = tan(\widehat{ZWH})$$


d'où

$$\frac{3}{5} = \tan(\overline{ZWH})$$

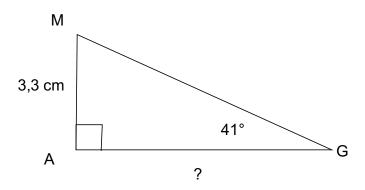
On a donc \widetilde{ZWH} = ArcTan(3 / 5) \approx 31°.

Fiche: 334

Exercice 2

Dans le triangle FWN rectangle en F, on cherche une relation entre l'angle aigu FWN son coté adjacent et son coté opposé.

$$\frac{FN}{FW} = tan(\widehat{FWN})$$


d'où

$$\frac{6.7}{FW} = \tan(59^\circ)$$

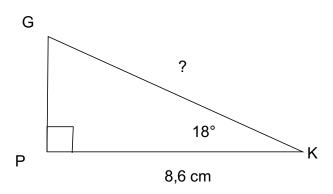
On a donc FW = $6.7 / \tan(59^\circ) \approx 4.0 \text{ cm}$

Fiche: 334

Exercice 3

Dans le triangle AMG rectangle en A, on cherche une relation entre l'angle aigu \widehat{AGM} son coté opposé et son coté adjacent.

$$\frac{AM}{AG} = \tan(\widehat{AGM})$$


ďoù

$$\frac{3,3}{AG} = \tan(41^\circ)$$

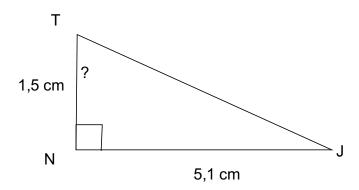
On a donc AM = 3,3 : $tan(41^\circ) \approx 3.8$ cm

Fiche: 334

Exercice 4

Dans le triangle PGK rectangle en P, on cherche une relation entre l'angle aigu PKG son coté adjacent et l'hypoténuse du triangle.

$$\frac{PK}{GK} = \cos(\widehat{PKG})$$


ďoù

$$\frac{8,6}{GK} = \cos(18^\circ)$$

On a donc GK = $8.6 / \cos(18^{\circ}) \approx 9.0 \text{ cm}$

Fiche: 334

Exercice 5

Dans le triangle NTJ rectangle en N, on cherche une relation entre l'angle aigu NTJ son coté adjacent et son coté opposé.

$$\frac{NJ}{NT} = tan(\overline{NTJ})$$

ďoù

$$\frac{5,1}{1,5} = \tan(\overline{NTJ})$$

On a donc $\widetilde{\text{NTJ}} = \text{ArcTan}(5,1/1,5) \approx 74^{\circ}$.