♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle JPB rectangle en J, on sait que :

- JP = 9.6 cm
- PBJ = 45°

Après avoir fait un schéma, calcule la longueur du segment [JB]. (Arrondir au dixième)

Exercice 2

Dans le triangle PRA rectangle en P, on sait que :

- PA = 7.3 cm
- PRA = 79°

Après avoir fait un schéma, calcule la longueur du segment [PR]. (Arrondir au dixième)

Exercice 3

Dans le triangle VMK rectangle en V, on sait que :

- VM = 2.2 cm
- VK = 5.4 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle VKM.

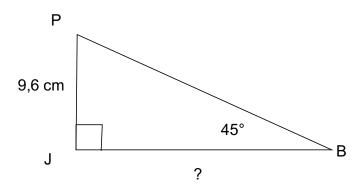
Exercice 4

Dans le triangle VTF rectangle en V, on sait que :

- VT = 0.8 cm
- VTF = 69°

Après avoir fait un schéma, calcule la longueur du segment [FT]. (Arrondir au dixième)

Exercice 5


Dans le triangle GLT rectangle en G, on sait que :

- GT = 3.9 cm
- LT = 9.2 cm

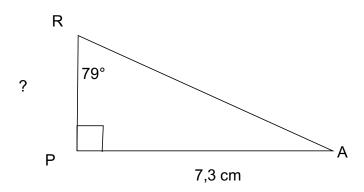
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle GLT.

Fiche: 36

Exercice 1

Dans le triangle JPB rectangle en J, on cherche une relation entre l'angle aigu JBP son coté opposé et son coté adjacent.

$$\frac{JP}{JB} = tan(\overline{JBP})$$


ďoù

$$\frac{9.6}{\text{JB}} = \tan(45^\circ)$$

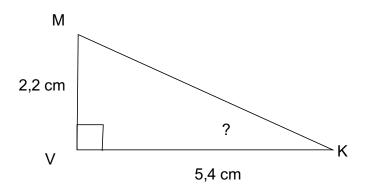
On a donc JP = 9.6: tan(45°) ≈ 9.6 cm

Fiche: 36

Exercice 2

Dans le triangle PRA rectangle en P, on cherche une relation entre l'angle aigu PRA son coté adjacent et son coté opposé.

$$\frac{PA}{PR} = tan(\widehat{PRA})$$


ďoù

$$\frac{7,3}{PR} = \tan(79^\circ)$$

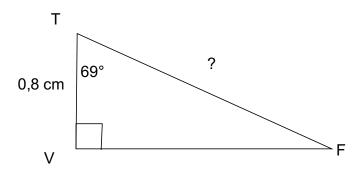
On a donc PR = 7,3 / $tan(79^\circ) \approx 1.4$ cm

Fiche: 36

Exercice 3

Dans le triangle VMK rectangle en V, on cherche une relation entre l'angle aigu \widetilde{VKM} son coté opposé et son coté adjacent.

$$\frac{VM}{VK} = tan(\widehat{VKM})$$


d'où

$$\frac{2,2}{5,4} = \tan(\widehat{VKM})$$

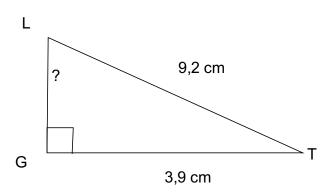
On a donc \widehat{VKM} = ArcTan(2,2 / 5,4) \approx 22°.

Fiche : 36

Exercice 4

Dans le triangle VTF rectangle en V, on cherche une relation entre l'angle aigu VTF son coté adjacent et l'hypoténuse du triangle.

$$\frac{VT}{TF} = cos(\overline{VTF})$$


ďoù

$$\frac{0.8}{TF} = \cos(69^\circ)$$

On a donc TF = $0.8 / \cos(69^{\circ}) \approx 2.2 \text{ cm}$

Fiche: 36

Exercice 5

Dans le triangle GLT rectangle en G, on cherche une relation entre l'angle aigu GLT son coté opposé et l'hypoténuse du triangle.

$$\frac{GT}{LT} = sin(\widehat{GLT})$$

d'où

$$\frac{3.9}{9.2} = \sin(\widehat{GLT})$$

On a donc \widehat{GLT} = ArcSin(3,9 / 9,2) \approx 25°.