♥ Trigonométrie

Dans les cinq exercices qui suivent, calcule ce qui est demandé en soignant la rédaction!

Exercice 1

Dans le triangle HZK rectangle en H, on sait que :

- HK = 2 cm
- ZKH = 32°

Après avoir fait un schéma, calcule la longueur du segment [KZ]. (Arrondir au dixième)

Exercice 2

Dans le triangle GRK rectangle en G, on sait que :

- RK = 2.4 cm
- $\overrightarrow{RKG} = 34^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [GR]. (Arrondir au dixième)

Exercice 3

Dans le triangle ZMH rectangle en Z, on sait que :

- MH = 9.2 cm
- $MHZ = 34^{\circ}$

Après avoir fait un schéma, calcule la longueur du segment [ZH]. (Arrondir au dixième)

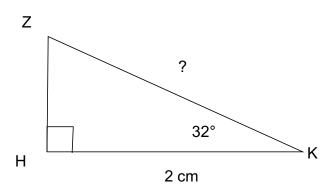
Exercice 4

Dans le triangle FLD rectangle en F, on sait que :

- FL = 2.5 cm
- LD = 9.6 cm

Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle FLD.

Exercice 5


Dans le triangle VSZ rectangle en V, on sait que :

- VS = 1,2 cm
- VZ = 4.3 cm

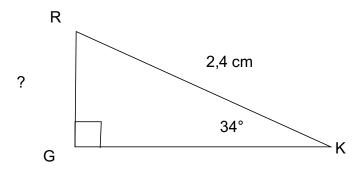
Après avoir fait un schéma, calcule l'arrondi au degré près de la mesure de l'angle VZS.

Fiche: 365

Exercice 1

Dans le triangle HZK rectangle en H, on cherche une relation entre l'angle aigu HKZ son coté adjacent et l'hypoténuse du triangle.

$$\frac{HK}{ZK} = \cos(\overline{HKZ})$$


ďoù

$$\frac{2}{ZK} = \cos(32^\circ)$$

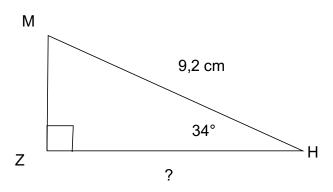
On a donc ZK = $2 / \cos(32^{\circ}) \approx 2.4 \text{ cm}$

Fiche: 365

Exercice 2

Dans le triangle GRK rectangle en G, on cherche une relation entre l'angle aigu GKR son coté opposé et l'hypoténuse du triangle.

$$\frac{GR}{RK} = \sin(\overline{GKR})$$


d'où

$$\frac{GR}{2,4} = \sin(34^\circ)$$

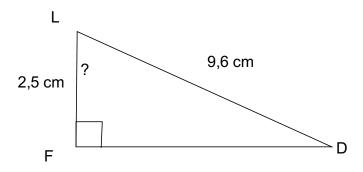
On a donc GR = $2.4 \times \sin(34^{\circ}) \approx 1.3$ cm

Fiche: 365

Exercice 3

Dans le triangle ZMH rectangle en Z, on cherche une relation entre l'angle aigu \overline{ZHM} son coté adjacent et l'hypoténuse du triangle.

$$\frac{ZH}{MH} = \cos(\widehat{ZHM})$$


ďoù

$$\frac{ZH}{9,2} = \cos(34^\circ)$$

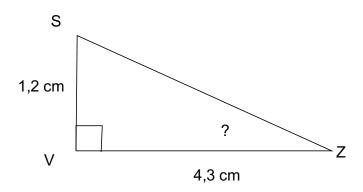
On a donc ZH = $9.2 \times \cos(34^{\circ}) \approx 7.6$ cm

Fiche: 365

Exercice 4

Dans le triangle FLD rectangle en F, on cherche une relation entre l'angle aigu FLD son coté adjacent et l'hypoténuse du triangle.

$$\frac{FL}{LD} = cos(\widehat{FLD})$$


ďoù

$$\frac{2,5}{9,6} = \cos(\overline{\text{FLD}})$$

On a donc $\overline{\text{FLD}}$ = ArcCos(2,5 / 9,6) \approx 75°.

Fiche: 365

Exercice 5

Dans le triangle VSZ rectangle en V, on cherche une relation entre l'angle aigu \widetilde{VZS} son coté opposé et son coté adjacent.

$$\frac{VS}{VZ} = tan(\widehat{VZS})$$

d'où

$$\frac{1,2}{4,3} = \tan(\widehat{VZS})$$

On a done $\overline{\text{VZS}} = \text{ArcTan}(1,2/4,3) \approx 16^{\circ}$.