In theory, there is no difference between theory and practice. In practice, there is.
Chuck Reid (sur mon T shirt!)
Proportionnalité
On dit qu'un tableau est un tableau de proportionnalité si les termes de la deuxième ligne s'obtiennent en multipliant ceux de la première par un même nombre. Ce nombre s'appelle le coefficient de proportionnalité.
Exemple:
Côté d'un carré en cm | 1 | 2 | 3 | 4 | 5 | 10 | 4.1 |
Périmètre de ce carré en cm | 4 | 8 | 12 | 16 | 20 | 40 | 16.4 |
Ce tableau est un tableau de proportionnalité.
Le coefficient est 4
Les points du graphique sont alignés avec l'origine du repère.
Le coefficient de proportionnalité 4 peut être « lu » sur le graphique:
Si on avance de 1 sur l'axe des abscisses, on monte(+) de 4 sur l'axe des ordonnées
L'usine représente la fonction linéaire f qui a x associe 4x
On note:
f: x -> 4x ou f(x)=4x
on a:
f: 5 -> 20 qu'on écrira f(5)=20.
L'usine f (la fonction linéaire) transforme la matière première (les nombres) pour « fabriquer » de nouveaux nombres (qu'on appelle images)
f(3)=12 peut se traduire par:
Par la fonction linéaire f, l'image du nombre 3 est le nombre 12.
Ainsi à chaque situation de proportionnalité correspond une fonction linéaire. La représentation graphique d'une fonction linéaire est donc une droite passant l'origine du repère.
Un magasin augmente le prix de tous ses produits de 15%, remplir le tableau suivant:
Prix avant l'augmentation en euros | 24.40 | 48.80 | 976 |
Augmentation en euros | 3.66 | 7.32 | 146.40 |
En pratique on peut utiliser la fonction linéaire f: x -> 0,15x pour calculer l'augmentation de 15% (15%=15/100=0,15) sur un prix donné. f(100)=15 , f(0)=0 etc.
Remplir le tableau suivant:
Prix avant l'augmentation en euros | 24.40 | 48.80 | 976 | 25 | 28.80 |
Prix après l'augmentation en euros | 28.06 | 56.12 | 1122.4 | 28.75 | 33.12 |
En pratique on peut utiliser la fonction linéaire g: x -> 1,15x pour calculer le nouveau prix après une augmentation de 15% En effet :
x+0,15x=(1+0,15)x=1,15x
g(100)=115, g(0)=0 etc.
D'autres situations classiques de problèmes sont en rapport avec la proportionnalité et les fonctions linéaires:
Monsieur Durand fait sa promenade hebdomadaire à vélo. Il se rend au sommet du mont A à 30km de son domicile à 20km/h (ça monte) puis revient pas la même route à 30 km/h (ça descend!).Quelle est sa vitesse moyenne lors de sa promenade, en km/h puis en m/s?
Étudions «sa promenade»:
Distance en km | 30 | 20 |
Temps en heure | t | 1 |
t=30/20=1,5h. (On peut aussi utiliser la formule V=d/t)
Le temps de l'aller est une heure et demie.
Distance en km | 30 | 30 |
Temps en heure | t | 1 |
Le temps du retour est évidemment 1 heure
Nous allons calculer la vitesse moyenne:
Distance en km | 60 | d |
Temps en heure | 2.5 | 1 |
d=60/2,5=24
La vitesse moyenne sur le trajet total est donc 24km/h (Étonnant non?)
Distance en m | 24000 | d |
Temps en secondes | 3600 | 1 |
d=24000/3600=240/36=20/3 6,67m/s
La vitesse moyenne est environ 6,67 m/s sur le trajet total.
Il suffit de retenir que:
Pour une échelle de 1/250 000 signifie que 1 unité sur le plan représente 250 000 unités dans la réalité et de calculer la quatrième proportionnelle, en fonction de l'énoncé.
Distance en m sur dessin | 1 | d? |
Distance en dans la réalité | 250 000 | D? |
OFFICIEL
Utiliser, dans le plan muni d'un repère, la caractérisation de la proportionnalité sous la forme d'alignement de points avec l'origine.
Utiliser l'égalité d = vt pour des calculs de distance parcourue, de vitesse et de temps. Changer d'unités de vitesse (mètre par seconde et kilomètre par heure).
Mettre en oeuvre la proportionnalité dans des situations simples utilisant à la fois des pourcentages et des quantités ou des effectifs.
On fera travailler les élèves à la fois sur des exemples et des contre-exemples de situations de proportionnalité.
Les situations où interviennent des vitesses moyennes constituent des exemples riches où le traitement mathématique s'avère particulièrement pertinent, comme l'étude de la vitesse moyenne d'un trajet sur un parcours de 60 km, où l'aller se parcourt à 20 km. h-1 et le retour à 30 km. h-1. Les compétences exigibles se réduisent aux vitesses mais d'autres situations de changements d'unités méritent d'être envisagées: problèmes de change monétaire, consommation de carburant d'un véhicule en litres pour 100 kilomètres ou en kilomètres parcourus par litre.
En liaison avec d'autres disciplines (géographie,...), la notion d'indice pourra être présentée comme un cas particulier du coefficient de proportionnalité, donnant lieu à illustrations et calculs mais en aucun cas à des développements théoriques.
Des situations issues de la vie courante ou des autres disciplines demandent de mettre en oeuvre à la fois un coefficient de proportionnalité, sous forme de pourcentage ou d'indice, et des quantités ou des effectifs. Par exemple, connaissant le pourcentage d'un caractère dans deux groupes d'effectifs différents,déterminer le pourcentage obtenu après réunion des deux groupes.
L'essentiel des notions de mathématiques de la classe de 4ème.
Monoposte : 29,00 €
Un manuel de mathématiques de l'association Sésamath
pour les classes de 4e (édition 2011).
Prix du produit : 11,80 €
La problématique était la suivante :
L'équipe pédagogiques du collège dans lequel j'exerce désirait, dans le cadre de la semaine des Mathématiques, créer une activité en ligne à destination de toutes les classes de sixième. Chaque élève joue pour sa classe. Il doit donc avoir un pseudo et nous devons, grâce à lui, savoir dans quelle classe il est inscrit.
Or la nécessité d'être en conformité avec le RGPD nous oblige à une certaine prudence.
Notre idée est la suivante :
Nous créons pas classe une liste de 50 pseudos dans lequel un code numérique identifie la classe d'origine. Chaque élève choisit un pseudo et le raye de la liste.
Ce pseudo est son identifiant pour accéder aux activités (via Canopé) . Aucune donnée personnelle n'est sauvegardée...
J'utilise un fichier texte avec quelques noms d'animaux :
[text] CHIEN CHAT TAUREAU VACHE AGNEAU CHEVRE CERF LAPIN COCHON CHEVAL LION TIGRE PANTHERE JAGUAR GUEPARD OURS LOUP RENARD HYENE ELEPHANT RHINOCEROS HIPPOPOTAME ZEBRE GIRAFE ANTILOPE KOALA KANGOUROU CASTOR SINGE PANDA LOUTRE TORTUE SERPENT LEZARD IGUANE CROCODILE ALLIGATOR DRAGON PYTHON MOUSTIQUE MOUTON CHEVREUIL OURSON SOURIS RAT POULE CANARD OIE COQ PAON PERROQUET PINGOUIN FLAMANT FOUINE HERISSON COLOMBE PIGEON [/text]Avec le code python qui suit on génère un fichier texte qui répond au cahier des charges:
Et on obtient le fichier texte " result.txt ":
[text]6A CHEVRE17 GUEPARD17 OURS29 FOUINE21 POULE13 OURSON17 COLOMBE21 VACHE13 CHEVREUIL21 COQ25 FLAMANT17 COCHON13 HYENE21 CASTOR29 PERROQUET13 KANGOUROU21 GIRAFE29 ANTILOPE33 TORTUE21 TIGRE21 CHIEN17 IGUANE29 TAUREAU17 CHEVAL25 ALLIGATOR25 RENARD25 LION17 PINGOUIN21 PIGEON21 RHINOCEROS21 CHAT13 SERPENT33 MOUTON21 HERISSON21 KOALA29 MOUSTIQUE13 DRAGON25 ZEBRE17 PAON21 SOURIS25 AGNEAU33 PANTHERE33 CROCODILE33 RAT25 PANDA29 SINGE17 LEZARD29 LOUP25 OIE13 CANARD33 ---------------------------------------- 6B PANDA38 RENARD38 CHEVREUIL26 CHAT22 CHIEN22 CHEVRE14 OURSON34 HYENE18 CERF38 PYTHON14 LOUTRE22 VACHE34 HIPPOPOTAME22 CASTOR18 MOUSTIQUE14 LOUP26 FOUINE26 OURS26 LEZARD34 COCHON38 OIE38 SOURIS22 CROCODILE26 SERPENT14 TIGRE26 DRAGON22 IGUANE34 AGNEAU18 PINGOUIN26 SINGE26 ANTILOPE22 ZEBRE14 KANGOUROU14 ALLIGATOR18 HERISSON34 LAPIN22 PERROQUET18 PAON14 COLOMBE26 POULE26 MOUTON38 COQ14 JAGUAR34 ELEPHANT18 LION18 RHINOCEROS14 TAUREAU34 GUEPARD26 FLAMANT26 PANTHERE38 ---------------------------------------- 6C COCHON27 CROCODILE31 ZEBRE11 LOUTRE31 FOUINE19 KANGOUROU23 LEZARD19 GUEPARD11 LAPIN31 PYTHON19 TIGRE19 OIE31 GIRAFE15 COQ31 CHEVAL27 CASTOR19 ELEPHANT15 OURSON15 RENARD19 DRAGON11 TORTUE27 ALLIGATOR11 HYENE31 CHAT31 KOALA15 RHINOCEROS31 LION19 FLAMANT19 PAON23 LOUP15 HIPPOPOTAME11 CERF11 CHEVREUIL11 VACHE19 CHIEN23 SINGE23 AGNEAU27 CHEVRE11 OURS31 IGUANE27 PANTHERE23 SERPENT23 TAUREAU23 POULE31 CANARD23 COLOMBE11 PIGEON23 RAT23 PINGOUIN19 PANDA27 ---------------------------------------- 6D CHEVRE28 PAON32 ZEBRE12 CASTOR16 MOUSTIQUE32 LOUTRE12 CHEVAL36 RENARD24 OURSON36 CHEVREUIL32 ANTILOPE36 TORTUE36 SINGE16 TIGRE12 TAUREAU16 COCHON28 LEZARD24 AGNEAU12 PIGEON28 JAGUAR12 HYENE36 HERISSON36 FLAMANT32 CHAT24 RAT16 PERROQUET28 VACHE16 GIRAFE24 ELEPHANT12 PINGOUIN36 SERPENT24 MOUTON16 POULE28 OURS24 PYTHON24 HIPPOPOTAME28 COLOMBE32 LION12 ALLIGATOR24 GUEPARD12 RHINOCEROS24 COQ16 OIE24 SOURIS12 LOUP16 CERF32 CROCODILE32 PANDA24 KOALA12 FOUINE24 ---------------------------------------- [/text]J'ai choisi les nombres de deux chiffres pour qu'on puisse rapidement retrouver la classe en question : Le reste dans la division euclidienne de ce nombre par 4 donne le rang de la classe :
13 = 4 × 3 + 1 : première classe
Le code Python n'est pas commenté, il est très simple !
lien vers l'article sur wouf blogGardez Windows propre!
Un lien vers Ccleaner est disponible dans la boite à outils, du menu "informatique"...