Ce n'est pas parce que les choses sont difficiles que nous n'osons pas, c'est parce que nous n'osons pas qu'elles sont difficiles.
Sénèque
Consultez la page du catalogue pour découvrir les formules, les méthodes de calcul et la réciproque.
📚 Voir les ressources pédagogiquesVCT est un triangle rectangle en V, tel que VC = 91 m et VT = 100.8 m.
Après avoir fait un schéma, calcule, en rédigeant la longueur du segment [CT].
FWN est un triangle rectangle en F, tel que FN = 17.1 dm et WN = 22.1 dm.
Après avoir fait un schéma, calcule, en rédigeant la longueur du segment [FW].
TJN est un triangle rectangle en T, tel que TJ = 10.4 dm et JN = 18.5 dm.
Après avoir fait un schéma, calcule, en rédigeant la longueur du segment [TN].
VAW est un triangle tel que :
Ce triangle est-il rectangle ? Justifie.
LCS est un triangle tel que :
Ce triangle est-il rectangle ? Justifie.
Ces exercices sont entièrement corrigés pour faciliter l'accompagnement scolaire à la maison. Votre enfant peut s'auto-évaluer grâce aux corrections détaillées, ce qui favorise son autonomie dans les apprentissages. Nos activités suivent rigoureusement les programmes officiels et permettent un entraînement progressif et structuré. Ressources PDF téléchargeables disponibles pour une utilisation hors ligne.
(En m)
Dans le triangle VCT rectangle en V d'après le théorème de Pythagore :
CT2 = VC2 + VT2
CT2 = 912 + 100.82
CT2 = 8281 + 10160.64
CT2 = 18441.64
CT = √18441.64 m
CT = 135.8 m
(En dm)
Dans le triangle FWN rectangle en F d'après le théorème de Pythagore :
WN2 = FW2 + FN2
22.12 = FW2 + 17.12
488.41 = FW2 + 292.41
FW2 = 488.41 - 292.41
FW2 = 196
FW = √196 dm
FW = 14 dm
(En dm)
Dans le triangle TJN rectangle en T d'après le théorème de Pythagore :
JN2 = TJ2 + TN2
18.52 = 10.42 + TN2
342.25 = 108.16 + TN2
TN2 = 342.25 - 108.16
TN2 = 234.09
TN = √234.09 dm
TN = 15.3 dm
(En m)
Dans le triangle VAW :
Donc AW2 = VA2 + VW2
D'après la réciproque du théorème de Pythagore, le triangle VAW est rectangle en V.
(En dm)
Dans le triangle LCS :
Donc CS2 ≠ LC2 + LS2
Le triangle LCS n'est pas rectangle. (S'il l'était, alors l'égalité ci-dessus serait vérifiée d'après le théorème de Pythagore.)
D'après la contraposée du théorème de Pythagore, le triangle LCS n'est pas rectangle.
Pour accéder à nos ressources gratuites, il vous suffit de sélectionner l'activité que vous désirez dans le formulaire au dessus de l'activité du jour. Ensuite, utilisez l'icône appropriée sous les liens de partage pour télécharger vos PDF.
N'oubliez pas, partager fait vivre les sites ! 😊 Merci de votre soutien !
Le générateur du contenu de cette page (php, svg, html et pdf) est développé en Python3.8.2 Mon travail est sous licence Creative commons et mon code est disponible sur simple demande.
N'hésitez pas à me contacter si vous detectez la moindre imperfection, ou si vous imaginez une amélioration potentielle !
Open source et gratuité n'empêchent ni les dons ni les remerciements 😉
Un euro ou deux pour m'aider à payer le serveur ?
💙 Faire un don sur PayPal
Partager :