site2wouf.fr : Exercices d'arithmétique

Un tacle de Patrick Vieira n'est pas une truite en chocolat.

Vincent Delerm

Partager:

Facebook Twitter LinkedIn Email WhatsApp

imprimer
🧮

Besoin d'aide pour l'arithmétique ?

Consultez la page du catalogue pour découvrir les méthodes, le PGCD, le PPCM et les nombres premiers.

📚 Voir les ressources pédagogiques

Activité n°
lundi 21 septembre 2026

À vous de jouer !

« Les 6 exercices suivants peuvent être réalisés facilement avec une calculatrice. Mais maîtrisez-vous les automatismes nécessaires pour vous en passer ? »

Exercice 1

Encadre 691 et 953 par deux multiples consécutifs de 6.

Exercice 2

Quel est le plus grand multiple de 26 inférieur à 501 ?

Exercice 3

Quel est le plus petit multiple de 7 supérieur à 163 ?

Exercice 4

  1. Décompose 7500 et 8160 en produit de facteurs premiers.
  2. Déduis leur PPCM (Plus petit multiple commun)
  3. Déduis en leur PGCD (Plus grand diviseur commun)
  4. Simplifie au maximum la fraction :

    7500 / 8160

Exercice 5

  1. Donne les listes ordonnées des diviseurs de 15092 et 1863.
  2. Donne la liste ordonnée de leurs diviseurs communs.
  3. Déduis-en le PGCD de 15092 et 1863.
  4. Simplifie au maximum la fraction :

    15092 / 1863

"

Exercice 6

Les nombres suivants sont-ils premiers ? 6031; 13448; 5853; 655
📚

Information pour les parents

Ces exercices sont entièrement corrigés pour faciliter l'accompagnement scolaire à la maison. Votre enfant peut s'auto-évaluer grâce aux corrections détaillées, ce qui favorise son autonomie dans les apprentissages. Nos activités suivent rigoureusement les programmes officiels et permettent un entraînement progressif et structuré. Ressources PDF téléchargeables disponibles pour une utilisation hors ligne.


Casio Calculatrice Scolaire FX-92 collège classwiz
Nouvelle version : 18,89€

Publicité

Correction :

Exercice 1

Encadre 691 et 953 par deux multiples consécutifs de 6.

On effectue la division euclidienne de 691 par 6 :

6 9 1 6 1 1 5 6 9 0 6 1 3 0 3 1
  • 691 = 6 × 115 + 1 et 1 < 6
  • 691 = 690 + 1
  • donc 690 < 691 < 696 (690 + 6)
De même:

On effectue la division euclidienne de 953 par 6 :

9 5 3 6 1 5 8 6 5 3 0 3 3 5 8 4 5
  • 953 = 6 × 158 + 5 et 5 < 6
  • 953 = 948 + 5
  • donc 948 < 953 < 954 (948 + 6)

Exercice 2

Quel est le plus grand multiple de 26 inférieur à 501 ?

On effectue la division euclidienne de 501 par 26 :

5 0 1 26 1 9 6 2 1 4 2 4 3 2 7

Exercice 3

Quel est le plus petit multiple de 7 supérieur à 163 ?

On effectue la division euclidienne de 163 par 7 :

1 6 3 7 2 3 4 1 3 2 1 2 2

Exercice 4

Décomposition de 7500 en produit de facteurs premiers :
7500 2 7500 = 22 × 3 × 54
3750 2
1875 3
625 5
125 5
25 5
5 5
1
Décomposition de 8160 en produit de facteurs premiers :
8160 2 8160 = 25 × 3 × 5 × 17
4080 2
2040 2
1020 2
510 2
255 3
85 5
17 17
1
  1. Décompositions :
    7500 = 22 × 3 × 54
    8160 = 25 × 3 × 5 × 17
  2. Calcul du plus petit multiple commun :
    PPCM(7500;8160) = 25 × 3 × 54 × 17 = 1020000
  3. Calcul du plus grand diviseur commun :
    PGCD(7500;8160) = 22 × 3 × 5 = 60
  4. Simplification de la fraction :

    Si on simplifie une fraction par le plus grand diviseur commun à son numérateur et son dénominateur, la fraction obtenue est irréductible.

    d'où

    7500 / 8160

    =

    7500:60 / 8160:60

    =

    125 / 136

Exercice 5

  1. Les diviseurs :

    15092 : { 1; 2; 4; 7; 11; 14; 22; 28; 44; 49; 77; 98; 154; 196; 308; 343; 539; 686; 1078; 1372; 2156; 3773; 7546; 15092 }
    1863 : { 1; 3; 9; 23; 27; 69; 81; 207; 621; 1863 }

  2. Les diviseurs communs de 15092 et 1863 sont :

    { 1 }

  3. Le plus grand diviseur commun de 15092 et 1863 est :

    PGCD(15092;1863) = 1

  4. Simplification de la fraction :

    Leurs PGCD étant égal à 1, les nombres 15092 et 1863 sont premiers entre eux.

    Donc la fraction

    15092 / 1863

    est irréductible.

Exercice 6

  1. 6031 est-il premier ?
    6031 = 2 × 3015 + 1 6031 = 3 × 2010 + 1 6031 = 5 × 1206 + 1 6031 = 7 × 861 + 4 6031 = 11 × 548 + 3 6031 = 13 × 463 + 12 6031 = 17 × 354 + 13 6031 = 19 × 317 + 8 6031 = 23 × 262 + 5 6031 = 29 × 207 + 28 6031 = 31 × 194 + 17 6031 = 37 × 163 + 0
    6031 est divisible par 37 donc 6031 n'est pas un nombre premier.
  2. 13448 est-il premier ?
    13448 est pair donc 13448 n'est pas un nombre premier.
  3. 5853 est-il premier ?
    5+8+5+3 = 21
    2+1 = 3

    Critère de divisibilité par 3 :
    Un nombre entier est divisible par 3 si (et seulement si) la somme de ses chiffres est elle-même divisible par 3. .

    donc 5853 est divisible par 3. donc 5853 n'est pas un nombre premier.
  4. 655 est-il premier ?
    655 se termine par un 5, c'est un multiple de 5 donc 655 n'est pas un nombre premier.

Des centaines de PDF disponibles gratuitement !

Pour accéder à nos ressources gratuites, il vous suffit de sélectionner l'activité que vous désirez dans le formulaire au dessus de l'activité du jour. Ensuite, utilisez l'icône appropriée sous les liens de partage pour télécharger vos PDF.

N'oubliez pas, partager fait vivre les sites ! 😊 Merci de votre soutien !

🔗 Liens utiles

📥 Téléchargements

// Remarques, codes, note de version etc...

Le générateur du contenu de cette page (php, svg, html et pdf) est développé en Python3.12 Mon travail est sous licence Creative commons et mon code est disponible sur simple demande.

N'hésitez pas à me contacter si vous detectez la moindre imperfection, ou si vous imaginez une amélioration potentielle !

Open source et gratuité n'empêchent ni les dons ni les remerciements 😉
Un euro ou deux pour m'aider à payer le serveur ? 💙 Faire un don sur PayPal